Libraries and Mapping

Giovanni De Micheli
Integrated Systems Laboratory

LSI

Integrated Systems Laboratory

m
T
"1
—

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli - All rights reserved



Module 1

¢Objective
AlLibraries
AProblem formulation and analysis

AAlgorithms for library binding based on structural
methods
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Library binding

# Given an unbound logic network and a set of library cells

A Transform into an interconnection of instances of library cells

A Optimize delay

v (under area or power constraints)

A Optimize area
v Under delay and/or power constraints

A Optimize power
v Under delay and/or area constraints

¢ Library binding is called also technology mapping

ARedesigning circuits in different technologies
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Major approaches

¢ Rule-based systems
A Generic, handle all types of cells and situations
A Hard to obtain circuit with specific properties

A Data base:

v Set of pattern pairs
v Local search: detect pattern, implement its best realization

¢ Het =D e — —

Al 3
s Do o = poi-

¢ Mo o nes:
AF :j—j:t — —1 o >o%
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Library binding: issues

¢ Matching:

A A cell matches a sub-network when their terminal behavior is the
same

ATautology problem

A Input-variable assignment problem

¢ Covering:

AA cover of an unbound network is a partition into sub-networks
which can be replaced by library cells

A Binate covering problem

(c) Giovanni De Micheli 5



Assumptions

¢ Network granularity is fine
A Decomposition into base functions:
A 2-input AND, OR, NAND, NOR

¢ Trivial binding

A Use base cells to realize decomposed network

A There exists always a trivial binding:
v Base-cost solution...
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Example

Z=a+w
W=X+Yy
y=du
X=b+c
u=ef

(c)
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Example

Library Cost
1 D)—— AND2| 4 K=b+c
) )>—OR2 | 4 y = ax
Z = Xxd
5)— 0A21 | 5
m,: {v,,0R2}
a D—y
23 X m;: {v;,AND2}
m,: {v4,v,,0A21}
d D— ms: {v4,v5,0A21}
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Example

¢ Vertex covering:
A Coveringvy:(m;+my+ms)
A Coveringv,:(my;+my)

A Coveringv;:(m;+ms)

¢ Input compatibility:
A Match m, requires m;,
v (m’ 5 +my)
A Match m; requires m;,
v (m s +mg)
¢ Overall binate covering clause

A (my+mg+ms) (myrmg)(my+ms)(m’ ;+my)(m’ 3+my) =1
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Heuristic approach to library binding

¢ Split problem into various stages:

A Decomposition

v Cast network and library in standard form
v Decompose into base functions
v Example, NAND2 and INV

APartitioning

v Break network into cones
v Reduce to many multi-input, single-output networks

ACovering
v Cover each sub-network by library cells

¢ Most tools use this strategy

A Sometimes stages are merged

(c) Giovanni De Micheli
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Decomposition
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Covering
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Heuristic algorithms

¢ Structural approach

A Model functions by patterns
v Example: tree, dags

ARely on pattern matching techniques

¢ Boolean approach

A Use Boolean models

A Solve the tautology problem
v Use BDD technology

A More powerful

(c) Giovanni De Micheli
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Example

®Boolean vs. structural matching

_ TR —
of=xy+xy +y z ! EWW

eg=xy+x’y +xz i Il

¢Function equality is a tautology

A Boolean match

¢Patterns may be different

A Structural match may not exist W) W,
I TN

[ *\l 1/*\1 (/*\1
N \/ o/
><o/¢/

X Yy Z
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Example

SUBJECT TREE PATTERN TREES
cost =2 cost=3 cost=4 cost=5
INV NAND AND OR
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Example: Lib 1 ./\)\ 1/\1

Match of s: t1 Match of t: t1 Match of t: t3 Match of r: t2 Match of r: t4
cost =2 cost=2+3=5 cost=4 cost = 3+2+4 =9 cost=5+3 =8

Match of u: {2
cost=3

LA
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Tree covering

¢ Dynamic programming
A Visit subject tree bottom up

¢ At each vertex
A Attempt to match:

v Locally rooted subtree to all library cell
v Find best match and record

A There is always a match when the base cells are in the library
¢ Bottom-up search yields and optimum cover

¢ Caveat:
A Mapping into trees is a distortion for some cells

A Overall optimality is weakened by the overall strategy of splitting
into several stages
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Different covering problems

¢ Covering for minimum area:

AEach cell has a fixed area cost (label)

AArea is additive:
v Add area of match to cost of sub-trees

¢ Covering for minimum delay:

ADelay is fanout independent

v Delay computed with (max, +) rules
v Add delay of match to highest cost of sub-trees

ADelay is fanout dependent
v Look-ahead scheme is required

(c) Giovanni De Micheli

22



INV

Simple library

>
NAND2 :Do— Cf.b
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AOI2l
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AOI22
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v

N1v
N2v

IMIN1v
IMTN2v

IMN1I1v
IMTN2I1v

N1l1v
N2i1v

IMN1IN1v
ITN1N2v
IMIN2I1v

IMIN1I1v
ITN2N1v
ITN2N2v

IMN1N1v
ITN1N2v
ITN2N1v
ITN2N2v

t6A.1
t6A.2
t6A.3

t68.1
t68.2
t68.3

t7.1
t7.2
t7.3
t7.4
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Example — minimum area cover

#Areacost: INV:2 NAND2:3 AND2:4 AOI21:6

Network | Subject graph | Vertex | Match Gate Cost
X t2 NAND2(b,c) | 3
y t1 INV(a) 2

N

2 | NAND2(x,d) | 3+3=6

w | t2 | NAND2(yz) | 3+6+2=11

o | t1 | INvVw) 2411 =13

t3 | AND2(yz) | 6+4+2=12

t6B | AOI21(x,d,a) | 6+39
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¢ Fixed delays:

Example — minimum delay cover

¢ All inputs are stable at time 0, except for t; = 6

INV:2 NAND2:4 AND2:5 AOI21:10

Network | Subject graph | Vertex | Match Gate Cost
X t2 NAND2(b,c) | 4
I y t1 INV(a) 2

z t2 NAND2(x,d) | 6+4 =10

w t2 NAND2(y,z) | 10+4=14

z 0 t1 INV(w) 14 +2=16

t3 AND2(y,z) 10+5=/5

a' x4 'd [V v t6B | AOI21(x,d,a) | 10+6=16

b! 'c v v

(c) Giovanni De Micheli
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Minimum-delay cover for load-dependent delays

¢ Model

A Gate delay is d = o + B cap_load
A Capacitive load depends on the driven cells (fanout cone)
A There is a finite (possibly small) set of capacitive loads

¢ Algorithm

A Visit subject tree bottom up
A Compute an array of solutions for each possible load

A For each input to a matching cell, the best match for the corresponding load is
selected

¢ Optimality
A Optimum solution when all possible loads are considered
A Heuristic: group loads into bins
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Example — minimum delay cover

¢ Delays: INV:1+load NAND2: 3+load AND2: 4+load AOI21: 9+load
¢ All inputs are stable at time 0, except for t; = 6

¢ All loads are 1

Same as before !

Network | Subject graph | Vertex | Match Gate Cost
X t2 NAND2(b,c) | 4
y t1 INV(a) 2
z t2 NAND2(x,d) | 6+4 =10
w t2 NAND2(y,z) | 10+4=14
0 t1 INV(w) 14+2=16
t3 AND2(y,z) 10+5=/5
t6B | AOI21(x,d,a) | 10+ 6=16

(c) Giovanni De Micheli
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Example — minimum delay cover

¢ Delays: INV: 1+load NAND2: 3+load AND2: 4+load AOI21: 9+load
¢ All inputs are stable at time 0, except for t; = 6

¢ All loads are 1 (for cells seen so far)
¢ Add new cell SINV with delay 1 + "2 load and load 2

¢ The sub-network drives a load of 5
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Example — minimum delay cover

Cost

Network | Subject graph | Vertex | Match Gate Load=1|Load=2|Load=5

x | 2 |[NaND2e)|(a) | 5 |

| y | 1 |INv@) @) | 3 | 6

z | 2 |NAND2(xd) 1M | 14

w | 2 |NAND2(yz) | (14)—-(15) | 18

o | t1 |[INV(w) 20

t3 | AND2(y,2) 19

v v t6B | AOI21(x,d,a) 20
SINV(w) 18.5

\'} \'}
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Module 2

¢ Objectives

A Boolean covering
A Boolean matching
A Simultaneous optimization and binding

A Extensions to Boolean methods

(c) Giovanni De Micheli
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Boolean covering

¢Decompose network into base functions
¢Partition network into cones

¢Apply bottom-up covering to each cone

A When considering vertex v:

v Construct clusters by local elimination

v Limit the depth of the cluster by limiting the
support of the function

v Associate several functions with vertex v

v Apply matching and record cost fit
fiz2
fi3
fia
fis
fie

(c) Giovanni De Micheli

zy;

z(a + ¢);

(e + 2)y;

(e + 2)(a + ©);
(e + ' + d)y;
(e+ ' +d)(a—+ o),
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Boolean matching
P-equivalence

# Cluster function f(x)
A Sub-network behavior

¢ Pattern function g(y)
A Cell behavior

¢ P-equivalence

Als there a permutation operator P, such that f(x) =g ( P x)
is a tautology?

¢ Approaches:

A Tautology check over all input permutations
A Multi-rooted pattern ROBDD capturing all permutations

(c) Giovanni De Micheli 38



Input/output polarity assignment

¢ NPN classification of logic functions

¢ NPN-equivalence

A There exist a permutation operator P and complementation
operators N;and N,, such that f(x) =N, g ( P N; x ) is a tautology

¢ Variations:
A N-equivalence

A PN-equivalence

(c) Giovanni De Micheli 39



Boolean matching

¢ Pin assignment problem:

A Map cluster variables x to pattern variables y

A Characteristic equation: A(x,y) = 1

¢ Pattern function under variable assignment:
Aga(x)=S, (Axy)aly) )

¢ Tautology problem
A f(x) = g4 (x)
AV, f(x)=S, (A(xy)g(y) )

(c) Giovanni De Micheli
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Example

# Cluster terminals: x -- cell terminals: y

¢ Assign x,toy’ , and x, to y, ):2
¢ Characteristic equation "
A A (X4,X2,Y1,Y2) = (X1 © Y3) (X2 Y1) 2
¢ AND pattern function
AJ=Y1Yo

¢ Pattern function under assignment
ASyyo Ag=Spy (X1 @ Y,) (X Y1) Y1Y2) = XoX 4

(c) Giovanni De Micheli
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Signatures and filters

¢ Capture some properties of Boolean functions
¢ If signatures do not match, there is no match
¢ Signatures are used as filters to reduce computation

¢ Signatures:
AUnateness
A Symmetries

A Co-factor sizes

A Spectra

(c) Giovanni De Micheli 42



Filters based on unateness and symmetries

¢ Any pin assignment must associate:

A Unate variables in f(x) with unate variables in g(y)

A Binate variables in f(x) with binate variables in g(y)

¢ Variables or group of variables:

A That are interchangeable in f(x) must be interchangeable in g(y)

(c) Giovanni De Micheli 43



# Cluster function: f=abc

A Symmetries {{ a,b,c} }
A Unate

& Pattern functions

Agi=ath+c
v Symmetries {{ a,b,c}}
v Unate

A (g, =ab+c
v Symmetries { {a,b}, {c} }
v Unate

Ag;=abc’ +a’'b’c
v Symmetries { {a,b,c} }
v Binate

(c) Giovanni De Micheli
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Concurrent optimization and library binding

¢ Motivation

ALogic simplification is usually done prior to binding

ALogic simplification and substitution can be combined
with binding

¢ Mechanism

ABinding induces some don 't care conditions

AExploit don ’t cares as degrees of freedom in matching

(c) Giovanni De Micheli 45
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Boolean matching with don “t care conditions

¢ Given f(x), fyc(x) and g(y)

Ag matches f, if g is equivalent to h, where:

ff o ShSf+fy

¢ Matching condition:
Vi (foc(x) +H(x) S, (A (xy)aly) ))

(c) Giovanni De Micheli
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Example

#Assume v, is bound to an OR3(c’ ,b,e)
#Don’ t care set includes x @ (¢’ +b+e)
#Consider f; = x(a+c) with CDC = x’ ¢’

¢No simplification.
A Mapping into AOI gate.

¢Matching with DCs.
A Map to a MUX gate.

(c) Giovanni De Micheli 48
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c’'be
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C

Example

c’be
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Extended matching

¢ Motivation:
A Search implicitly for best pin assignment
A Make a single test, determining matching and assignment

¢ Technique:
A Construct BDD model of cell and assignments

¢ Visual intuition:
A Imagine to place MUX function at cell inputs

A Each cell input can be routed to any cluster input (or voltage rail)

A Input polarity can be changed:
v NP-equivalence (extensible to NPN)

A Cell and cluster may differ in size

¢ Cell and multiplexers are described by a composite function G(x,c)
A Pin assignment is determining c

(c) Giovanni De Micheli 50



Example

v

=y ty,y ; —

®Y,(C,X) = (CoCiXq + CoC X+ €' oC1X3) D C; 2

] :
oG = Y1 (C,X) + yZ(C,X) Y3(C,X) ¥3

¢An EXOR gate can be placed at the gate
output to support NPN-equivalence check

%1
X2 Ml

U

Co €G3 €05 CsCLC,

i

M2

(c) Giovanni De Micheli
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Extended matching modeling

¢ Model composite functions with ROBDDs

A Assume n-input cluster and m-input cell

AFor each cell input:

v "log, n ' variables for pin permutation
v One variable for input polarity

ATotal size of c: m(' log,n' +1)

A One additional variable for output polarity

¢ A match exists if there is at least one value of ¢ satisfying
M(c) = V,[Glx,.c) & f(x)]

(c) Giovanni De Micheli 52



Example

oCell: g=x"y

oCluster: f=wz’

*G(a,b,c,d) = (cB(zat+wa’ )’ (dD(zb+wb’)) a

z——C

y 4

oF TG=(wz) T (cO(zatwa’ )’ (dDzb+wb’))'

c,j?r D

®M(c)=ab’ ¢’ d” +a’ bed

- &

b
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Extended matching

¢ Extended matching captures implicitly all possible matches
# No extra burden when exploiting don ’t care sets

*M(c) = V, [G(x,c)® f(x) + fpclx) ]

¢ Efficient BDD representation

¢ Extensions:
A Support multiple-output matching

AFull library representation

(c) Giovanni De Micheli 54



Full library model

¢ Represent full library with L(x,c)
A One single (large) BDD

¢ Visual intuition

AAll composite cells connected to a MUX

¢ Compare cluster to library L(x,c)
AM(c) = V,[Lix,c) @ flx) + fpc(x) ]

AVector ¢ determines:

v Feasible cell matches
v Feasible pin assignments
v Feasible output polarity

(c) Giovanni De Micheli
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Summary

¢ Library binding is a key step in synthesis

¢ Most systems use some rules together with heuristic
algorithms that concentrate on combinational logic

A Best results are obtained with Boolean matching

A Sometimes structural matching is used for speed

¢ Library binding is tightly linked to buffering and to
physical design
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