
Libraries and Mapping

Giovanni De Micheli
Integrated Systems Laboratory

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed
© Giovanni De Micheli – All rights reserved

(c) Giovanni De Micheli 2

Module 1

Objective
Libraries
Problem formulation and analysis
Algorithms for library binding based on structural

methods

(c) Giovanni De Micheli 3

Library binding

Given an unbound logic network and a set of library cells
Transform into an interconnection of instances of library cells
Optimize delay

 (under area or power constraints)

Optimize area
 Under delay and/or power constraints

Optimize power
 Under delay and/or area constraints

Library binding is called also technology mapping
Redesigning circuits in different technologies

(c) Giovanni De Micheli 4

Major approaches

Rule-based systems
Generic, handle all types of cells and situations
Hard to obtain circuit with specific properties
Data base:

 Set of pattern pairs
 Local search: detect pattern, implement its best realization

Heuristic algorithms
Typically restricted to single-output combinational cells
Library described by cell functionality and parameters

Most systems use a combination of both approaches:
Rules are used for I/Os, high buffering requirements, …

(c) Giovanni De Micheli 5

Library binding: issues

Matching:
A cell matches a sub-network when their terminal behavior is the

same
Tautology problem
 Input-variable assignment problem

Covering:
A cover of an unbound network is a partition into sub-networks

which can be replaced by library cells
Binate covering problem

(c) Giovanni De Micheli 6

Assumptions

Network granularity is fine
Decomposition into base functions:
2-input AND, OR, NAND, NOR

Trivial binding
Use base cells to realize decomposed network
There exists always a trivial binding:

 Base-cost solution…

(c) Giovanni De Micheli 7

Example

(c) Giovanni De Micheli 8

Example

x = b + c
y = ax
z = xd

AND2 4
Cost

OR2

Library

OA21

4

5

v2

v3

v1
b

c

d z

y

x

a

b
c

d

a

x

z

y
m1: {v1,OR2}
m2: {v2,AND2}
m3: {v3,AND2}
m4: {v1,v2,OA21}
m5: {v1,v3,OA21}

x

v3

v2

v1

(c) Giovanni De Micheli 9

Example

 Vertex covering:
 Covering v1 : (m1 + m4 + m5)
 Covering v2 : (m2 + m4)
 Covering v3 : (m3 + m5)

 Input compatibility:
 Match m2 requires m1

 (m’2 + m1)
 Match m3 requires m1

 (m’3 + m1)

 Overall binate covering clause
 (m1+m4+m5) (m2+m4)(m3+m5)(m’2+m1)(m’3+m1) = 1

x

v3

v2

v1

(c) Giovanni De Micheli 10

Heuristic approach to library binding

Split problem into various stages:
Decomposition

 Cast network and library in standard form
 Decompose into base functions
 Example, NAND2 and INV

Partitioning
 Break network into cones
 Reduce to many multi-input, single-output networks

Covering
 Cover each sub-network by library cells

Most tools use this strategy
Sometimes stages are merged

(c) Giovanni De Micheli 11

Decomposition

(c) Giovanni De Micheli 12

Partitioning

(c) Giovanni De Micheli 13

Covering

(c) Giovanni De Micheli 14

Heuristic algorithms

Structural approach
Model functions by patterns

 Example: tree, dags

Rely on pattern matching techniques

Boolean approach
Use Boolean models
Solve the tautology problem

 Use BDD technology

More powerful

(c) Giovanni De Micheli 15

Example

Boolean vs. structural matching

 f = xy + x’y’ + y’z

 g = xy + x’y’ + xz

Function equality is a tautology
 Boolean match

Patterns may be different
 Structural match may not exist

(c) Giovanni De Micheli 17

Example

(c) Giovanni De Micheli 19

Example

SUBJECT TREE PATTERN TREES

cost = 2
INV

cost = 3
NAND

cost = 4
AND

cost = 5
OR

(c) Giovanni De Micheli 20

Example: Lib

Match of s: t1
cost = 2

s

r

u

t

Match of u: t2
cost = 3

s

r

u

t

Match of t: t1
cost = 2+3 = 5

s

r

u

t

Match of t: t3
cost = 4

s

r

u

t

Match of r: t2
cost = 3+2+4 =9

s

r

u

t

Match of r: t4
cost = 5+3 =8

(c) Giovanni De Micheli 21

Tree covering

Dynamic programming
Visit subject tree bottom up

At each vertex
Attempt to match:

 Locally rooted subtree to all library cell
 Find best match and record

There is always a match when the base cells are in the library
Bottom-up search yields and optimum cover
Caveat:

Mapping into trees is a distortion for some cells
Overall optimality is weakened by the overall strategy of splitting

into several stages

(c) Giovanni De Micheli 22

Different covering problems

Covering for minimum area:
Each cell has a fixed area cost (label)
Area is additive:

 Add area of match to cost of sub-trees

Covering for minimum delay:
Delay is fanout independent

 Delay computed with (max, +) rules
 Add delay of match to highest cost of sub-trees

Delay is fanout dependent
 Look-ahead scheme is required

(c) Giovanni De Micheli 23

Simple library

(c) Giovanni De Micheli 24

Example – minimum area cover

o

w

y z

a

b c

dx

N

N

N

I

I

v

vv

v

Network Subject graph Vertex Match Gate Cost

x t2 NAND2(b,c) 3

y t1 INV(a) 2

t3 AND2(y,z) 6 + 4 + 2 = 12

z t2 NAND2(x,d) 3+3 = 6

w t2 NAND2(y,z) 3+6+ 2 = 11

o t1 INV(w) 2+11 = 13

t6B AOI21(x,d,a) 6 + 3 = 9

Area cost: INV:2 NAND2:3 AND2: 4 AOI21: 6

(c) Giovanni De Micheli 25

Example – minimum delay cover
 Fixed delays: INV:2 NAND2:4 AND2: 5 AOI21: 10
 All inputs are stable at time 0, except for td = 6

o

w

y z

a

b c

dx

N

N

N

I

I

v

vv

v

Network Subject graph Vertex Match Gate Cost

x t2 NAND2(b,c) 4

y t1 INV(a) 2

t3 AND2(y,z) 10 + 5 = 15

z t2 NAND2(x,d) 6+4 = 10

w t2 NAND2(y,z) 10 + 4 = 14

o t1 INV(w) 14 + 2 = 16

t6B AOI21(x,d,a) 10 + 6 = 16

(c) Giovanni De Micheli 26

Minimum-delay cover for load-dependent delays

 Model
 Gate delay is d = α + β cap_load
 Capacitive load depends on the driven cells (fanout cone)
 There is a finite (possibly small) set of capacitive loads

 Algorithm
 Visit subject tree bottom up
 Compute an array of solutions for each possible load
 For each input to a matching cell, the best match for the corresponding load is

selected

 Optimality
 Optimum solution when all possible loads are considered
 Heuristic: group loads into bins

(c) Giovanni De Micheli 27

Example – minimum delay cover
 Delays: INV:1+load NAND2: 3+load AND2: 4+load AOI21: 9+load
 All inputs are stable at time 0, except for td = 6
 All loads are 1

o

w

y z

a

b c

dx

N

N

N

I

I

v

vv

v

Network Subject graph Vertex Match Gate Cost

x t2 NAND2(b,c) 4

y t1 INV(a) 2

t3 AND2(y,z) 10 + 5 = 15

z t2 NAND2(x,d) 6+4 = 10

w t2 NAND2(y,z) 10 + 4 = 14

o t1 INV(w) 14 + 2 = 16

t6B AOI21(x,d,a) 10 + 6 = 16

Same as before !

(c) Giovanni De Micheli 28

Example – minimum delay cover

 Delays: INV: 1+load NAND2: 3+load AND2: 4+load AOI21: 9+load

 All inputs are stable at time 0, except for td = 6

 All loads are 1 (for cells seen so far)

 Add new cell SINV with delay 1 + ½ load and load 2

 The sub-network drives a load of 5

(c) Giovanni De Micheli 29

Example – minimum delay cover

t3 AND2(y,z) 19

o t1 INV(w) 20

o

w

y z

a

b c

dx

N

N

N

I

I

v

vv

v

Network Subject graph Vertex Match Gate

Cost

Load=1 Load=2 Load=5

x t2 NAND2(b,c) 4 5 8

y t1 INV(a) 2 3 6

z t2 NAND2(x,d) 10 11 14

w t2 NAND2(y,z) 14 15 18

t6B AOI21(x,d,a) 20

SINV(w) 18.5

(c) Giovanni De Micheli 36

Module 2

Objectives
Boolean covering
Boolean matching
Simultaneous optimization and binding
Extensions to Boolean methods

(c) Giovanni De Micheli 37

Boolean covering

Decompose network into base functions

Partition network into cones

Apply bottom-up covering to each cone
 When considering vertex v:

 Construct clusters by local elimination
 Limit the depth of the cluster by limiting the

support of the function
 Associate several functions with vertex v
 Apply matching and record cost

(c) Giovanni De Micheli 38

Boolean matching
P-equivalence

Cluster function f(x)
Sub-network behavior

Pattern function g(y)
Cell behavior

P-equivalence
 Is there a permutation operator P, such that f(x) = g (P x)

is a tautology?

Approaches:
Tautology check over all input permutations
Multi-rooted pattern ROBDD capturing all permutations

(c) Giovanni De Micheli 39

Input/output polarity assignment

NPN classification of logic functions

NPN-equivalence
There exist a permutation operator P and complementation

operators Ni and No, such that f(x) = No g (P Ni x) is a tautology

Variations:
N-equivalence
PN-equivalence

(c) Giovanni De Micheli 40

Pin assignment problem:
Map cluster variables x to pattern variables y
Characteristic equation: A(x,y) = 1

Pattern function under variable assignment:
 gA (x) = Sy (A (x,y) g (y))

Tautology problem
 f(x) = gA (x)
"x f(x) = Sy (A (x,y) g (y))

Boolean matching

&
x1

x2

f

gy1y2

(c) Giovanni De Micheli 41

Cluster terminals: x -- cell terminals: y

Assign x1 to y’2 and x2 to y1

Characteristic equation
A (x1,x2,y1,y2) = (x1 Å y2) (x2 y1)

AND pattern function
g = y1 y2

Pattern function under assignment
Sy1y2 A g = Sy1y2 ((x1 Å y2) (x2 y1) y1 y2) = x2 x’1

Example

x1

x2

f

gy1y2

Å

Å

(c) Giovanni De Micheli 42

Signatures and filters

Capture some properties of Boolean functions

 If signatures do not match, there is no match

Signatures are used as filters to reduce computation

Signatures:
Unateness
Symmetries
Co-factor sizes
Spectra

(c) Giovanni De Micheli 43

Filters based on unateness and symmetries

Any pin assignment must associate:
Unate variables in f(x) with unate variables in g(y)
Binate variables in f(x) with binate variables in g(y)

Variables or group of variables:
That are interchangeable in f(x) must be interchangeable in g(y)

(c) Giovanni De Micheli 44

Example

 Cluster function: f = abc
 Symmetries { { a,b,c} }
 Unate

 Pattern functions
 g1 = a + b + c

 Symmetries { { a,b,c} }
 Unate

 g2 = ab +c
 Symmetries { {a,b}, {c} }
 Unate

 g3 = abc’ + a’b’c
 Symmetries { {a,b,c} }
 Binate

(c) Giovanni De Micheli 45

Concurrent optimization and library binding

Motivation
Logic simplification is usually done prior to binding
Logic simplification and substitution can be combined

with binding

Mechanism
Binding induces some don’t care conditions
Exploit don’t cares as degrees of freedom in matching

(c) Giovanni De Micheli 46

Example

(c) Giovanni De Micheli 47

Boolean matching with don’t care conditions

Given f(x), fDC(x) and g(y)
g matches f, if g is equivalent to h, where:

f f’DC ≤ h ≤ f + fDC

Matching condition:

"x (fDC(x) + f(x) Sy (A (x,y) g(y)))Å

(c) Giovanni De Micheli 48

Example

Assume vx is bound to an OR3(c’,b,e)

Don’t care set includes x Å (c’+b+e)

Consider fj = x(a+c) with CDC = x’c’

No simplification.
 Mapping into AOI gate.

Matching with DCs.
 Map to a MUX gate.

(c) Giovanni De Micheli 49

Example

(c) Giovanni De Micheli 50

Extended matching

 Motivation:
 Search implicitly for best pin assignment
 Make a single test, determining matching and assignment

 Technique:
 Construct BDD model of cell and assignments

 Visual intuition:
 Imagine to place MUX function at cell inputs
 Each cell input can be routed to any cluster input (or voltage rail)
 Input polarity can be changed:

 NP-equivalence (extensible to NPN)
 Cell and cluster may differ in size

 Cell and multiplexers are described by a composite function G(x,c)
 Pin assignment is determining c

(c) Giovanni De Micheli 51

Example

g = y1 + y2 y’3

y1 (c,x) = (c0c1x1 + c0c’1x2 + c’0c1x3) Å c2

G = y1 (c,x) + y2(c,x) y3(c,x)’

An EXOR gate can be placed at the gate
output to support NPN-equivalence check

(c) Giovanni De Micheli 52

Extended matching modeling

Model composite functions with ROBDDs
Assume n-input cluster and m-input cell
For each cell input:


┌ log2 n ┐ variables for pin permutation

 One variable for input polarity

Total size of c: m(┌ log2 n┐ + 1)
One additional variable for output polarity

A match exists if there is at least one value of c satisfying
M (c) = "x [G(x,c) f(x)]Å

Cell: g=x’y

Cluster: f = wz’

G(a,b,c,d) = (cÅ(za+wa’))’(dÅ(zb+wb’))

F G=(wz) (cÅ(za+wa’))’(dÅzb+wb’))

M(c) = ab’c’d’ + a’bcd
Å Å

(c) Giovanni De Micheli 53

Example

&
z

w

f

&
0
1

0
1

z
w

a c

b d

x

y
G

(c) Giovanni De Micheli 54

Extended matching

Extended matching captures implicitly all possible matches

No extra burden when exploiting don’t care sets

M (c) = "x [G(x,c) f(x) + fDC(x)]

Efficient BDD representation

Extensions:
Support multiple-output matching
Full library representation

Å

(c) Giovanni De Micheli 55

Full library model

Represent full library with L(x,c)
One single (large) BDD

Visual intuition
All composite cells connected to a MUX

Compare cluster to library L(x,c)
M (c) = "x [L(x,c) f(x) + fDC(x)]
Vector c determines:

 Feasible cell matches
 Feasible pin assignments
 Feasible output polarity

G1

G2

Gn

L

Å

(c) Giovanni De Micheli 56

Summary

Library binding is a key step in synthesis

Most systems use some rules together with heuristic
algorithms that concentrate on combinational logic
Best results are obtained with Boolean matching
Sometimes structural matching is used for speed

Library binding is tightly linked to buffering and to
physical design

