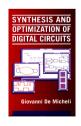
Libraries and Mapping

Giovanni De Micheli Integrated Systems Laboratory



Module 1

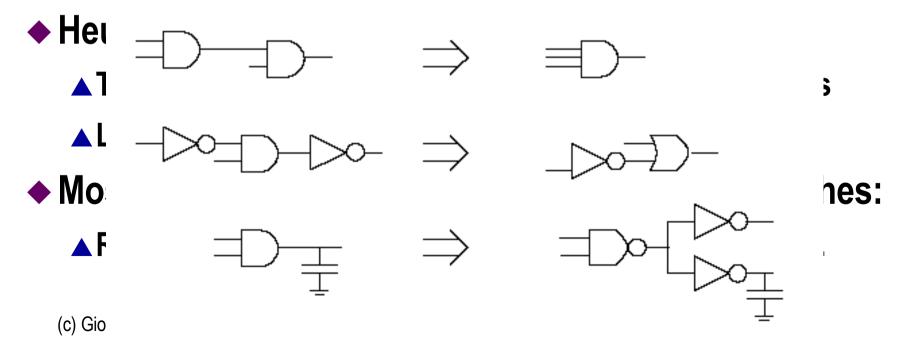
- **◆**Objective
 - **▲**Libraries
 - **▲**Problem formulation and analysis
 - ▲ Algorithms for library binding based on structural methods

Library binding

- Given an unbound logic network and a set of library cells
 - ▲ Transform into an interconnection of instances of library cells
 - **▲** Optimize delay
 - **▼** (under area or power constraints)
 - **▲** Optimize area
 - **▼** Under delay and/or power constraints
 - **▲** Optimize power
 - **▼** Under delay and/or area constraints
- Library binding is called also technology mapping
 - ▲ Redesigning circuits in different technologies

Major approaches

- Rule-based systems
 - ▲ Generic, handle all types of cells and situations
 - ▲ Hard to obtain circuit with specific properties
 - ▲ Data base:
 - **▼** Set of pattern pairs
 - **▼** Local search: detect pattern, implement its best realization



Library binding: issues

◆ Matching:

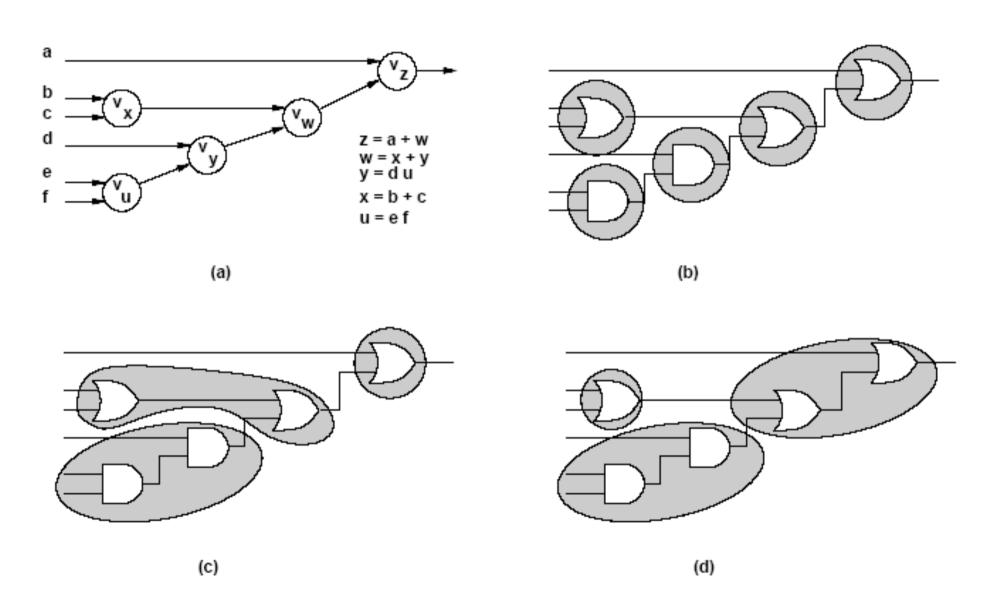
- ▲ A cell matches a sub-network when their terminal behavior is the same
- ▲ Tautology problem
- ▲ *Input-variable* assignment problem

◆ Covering:

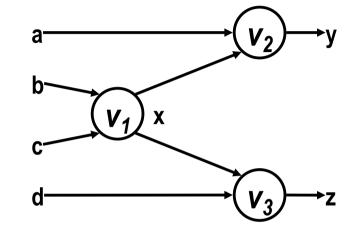
- ▲ A cover of an unbound network is a partition into sub-networks which can be replaced by library cells
- ▲ Binate covering problem

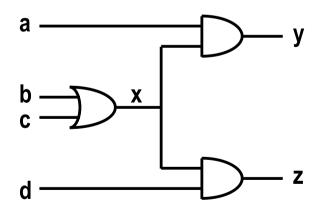
Assumptions

- Network granularity is fine
 - **▲** Decomposition into base functions:
 - ▲2-input AND, OR, NAND, NOR
- Trivial binding
 - ▲ Use base cells to realize decomposed network
 - **▲** There exists always a trivial binding:
 - **▼** Base-cost solution...



Library	Cost
AND2	4
OR2	4
——————————————————————————————————————	5

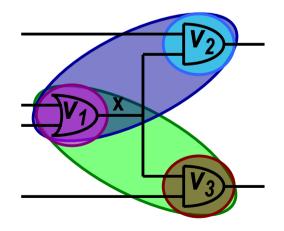




m₃: {v₃,AND2}

 m_4 : { $v_1, v_2, OA21$ }

 m_5 : { $v_1, v_3, OA21$ }



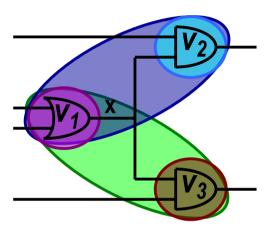
◆ Vertex covering:

- ▲ Covering v_1 : ($m_1 + m_4 + m_5$)
- \triangle Covering v_2 : ($m_2 + m_4$)
- \triangle Covering v_3 : ($m_3 + m_5$)

$$\nabla$$
 (m'₂ + m₁)

- ▲ Match m₃ requires m₁
 - \vee (m'₃ + m₁)

$$(m_1+m_4+m_5) (m_2+m_4)(m_3+m_5)(m_2+m_1)(m_3+m_1) = 1$$

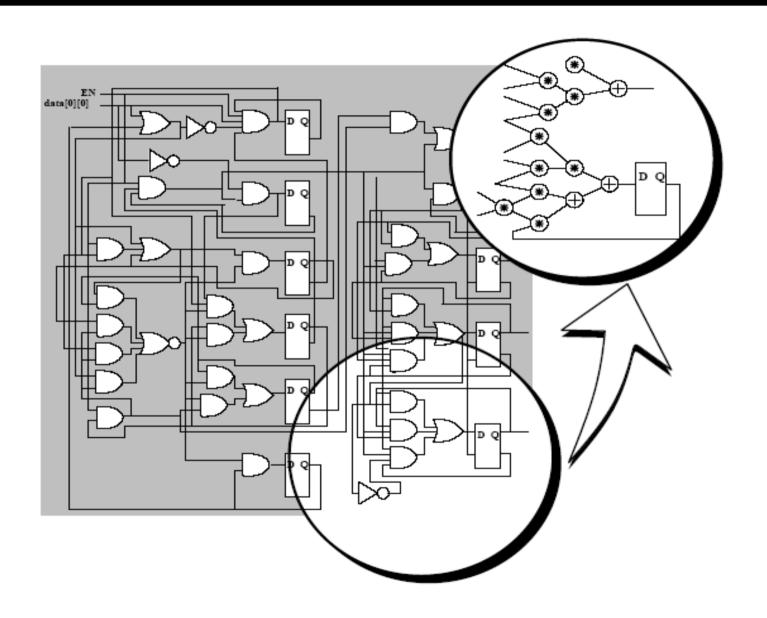


Heuristic approach to library binding

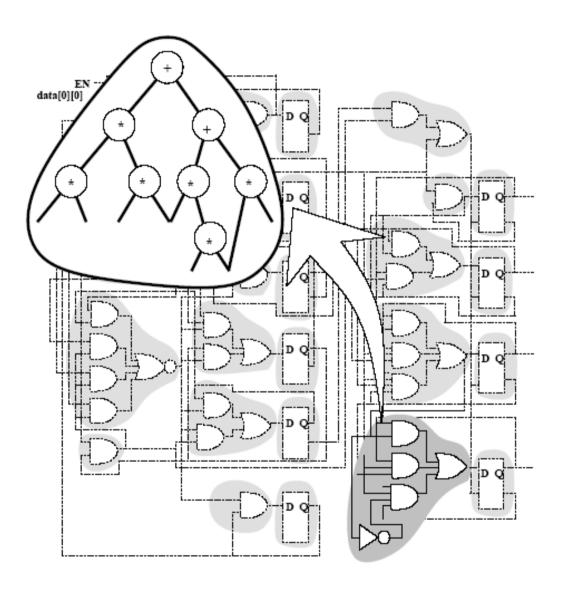
Split problem into various stages:

- **▲** Decomposition
 - **▼** Cast network and library in standard form
 - **▼** Decompose into base functions
 - **▼ Example, NAND2 and INV**
- **▲** Partitioning
 - **▼** Break network into cones
 - **▼** Reduce to many multi-input, single-output networks
- ▲ Covering
 - **▼** Cover each sub-network by library cells
- Most tools use this strategy
 - ▲ Sometimes stages are merged

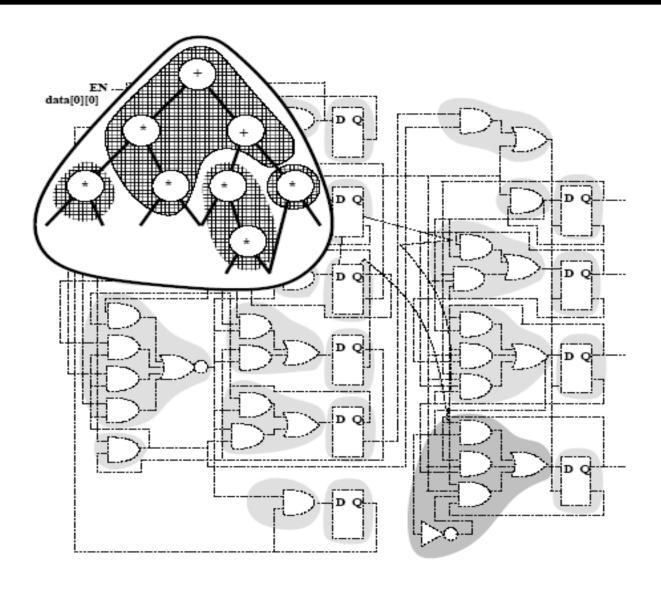
Decomposition



Partitioning



Covering



Heuristic algorithms

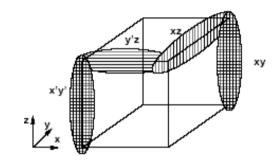
- Structural approach
 - ▲ Model functions by patterns
 - **▼** Example: tree, dags
 - ▲ Rely on pattern matching techniques
- ◆ Boolean approach
 - **▲** Use Boolean models
 - ▲ Solve the tautology problem
 - **▼** Use BDD technology
 - ▲ More powerful

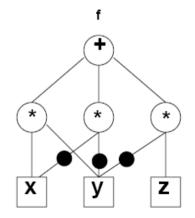
◆Boolean vs. structural matching

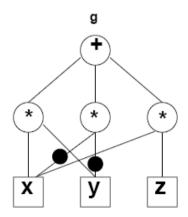
$$\bullet f = xy + x'y' + y'z$$

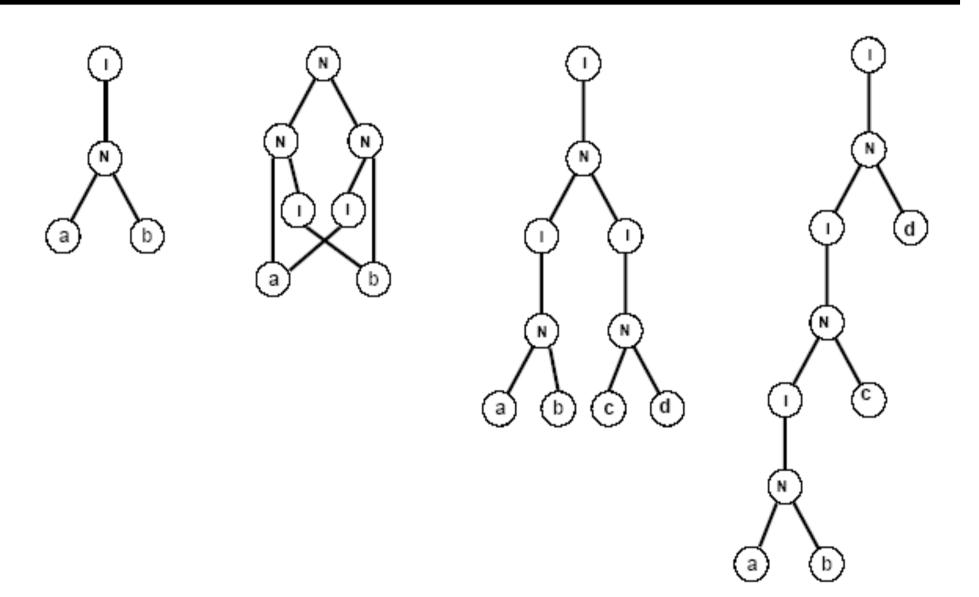
$$\Rightarrow$$
 g = xy + x' y' + xz

- ▲ Boolean match
- **◆**Patterns may be different
 - ▲ Structural match may not exist

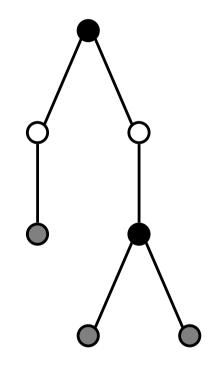






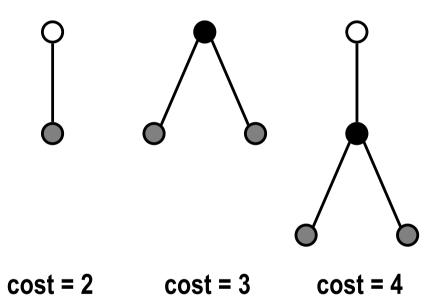


SUBJECT TREE



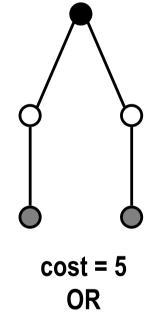
PATTERN TREES

AND



NAND

INV



Example: Lib I 🔨 🚶

Match of s: t1

Match of t: t1

Match of t: t3

Match of r: t2

Match of r: t4

cost = 2

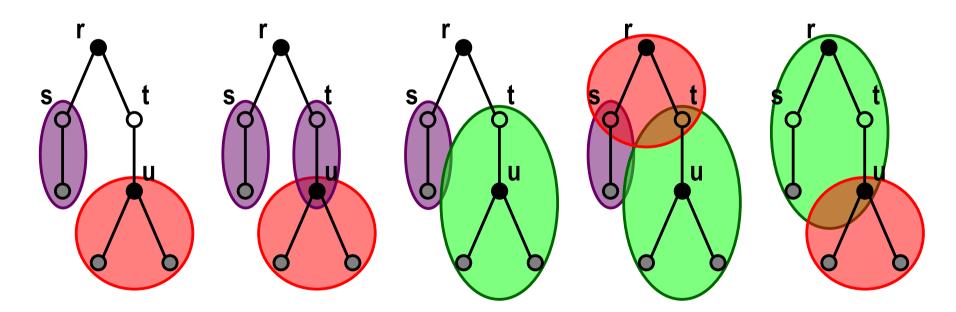
cost = 2+3 = 5

cost = 4

 $cost = 3+2+4 = 9 \quad cost = 5+3 = 8$

Match of u: t2

cost = 3



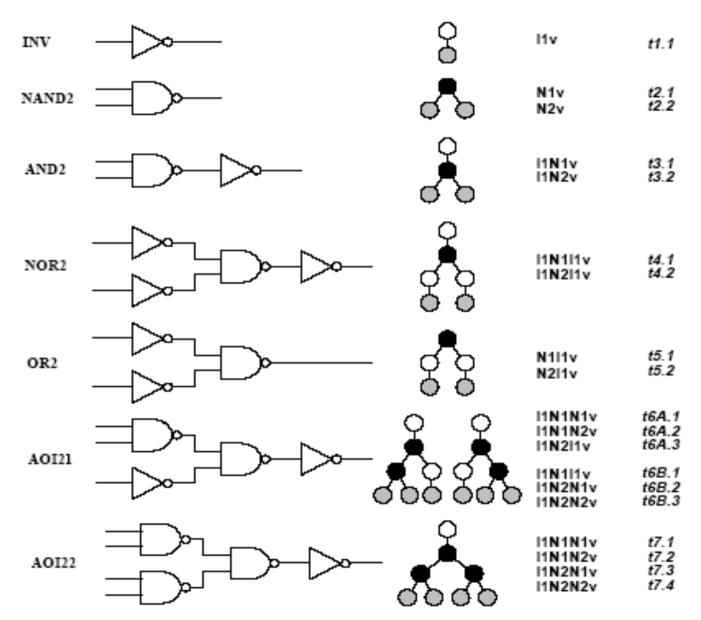
Tree covering

- Dynamic programming
 - ▲ Visit subject tree bottom up
- ◆ At each vertex
 - ▲ Attempt to match:
 - **▼** Locally rooted subtree to all library cell
 - **▼** Find best match and record
 - ▲ There is always a match when the base cells are in the library
- Bottom-up search yields and optimum cover
- Caveat:
 - ▲ Mapping into trees is a distortion for some cells
 - ▲ Overall optimality is weakened by the overall strategy of splitting into several stages

Different covering problems

- **◆** Covering for minimum area:
 - ▲ Each cell has a fixed area cost (label)
 - ▲ Area is additive:
 - **▼** Add area of match to cost of sub-trees
- Covering for minimum delay:
 - ▲ Delay is fanout independent
 - **▼** Delay computed with (max, +) rules
 - **▼** Add delay of match to highest cost of sub-trees
 - **▲** Delay is fanout dependent
 - **▼** Look-ahead scheme is required

Simple library



◆Area cost: INV:2 NAND2:3 AND2:4 AOI21:6

Network	Subject graph	Vertex	Match	Gate	Cost
o 		Х	t2	NAND2(b,c)	3
\	⊚ l	у	t1	INV(a)	2
		Z	t2	NAND2(x,d)	3+3 = 6
		w	t2	NAND2(y,z)	3+6+ 2 = 11
y z		o	t1	INV(w)	2+11 = 13
$ A A \rangle$	\bigcap		t3	AND2(y,z)	6 + 4 + 2 = 12
a x d	vo vo		t6B	AOI21(x,d,a)	6 + 3 = 9
\Box					
bl l _c	v [©] • _v				

◆ Fixed delays: INV:2 NAND2:4 AND2: 5 AOI21: 10

 \bullet All inputs are stable at time 0, except for $t_d = 6$

Network	Subject graph	Vertex	Match	Gate	Cost
•		х	t2	NAND2(b,c)	4
	© I	у	t1	INV(a)	2
₩ T	T	Z	t2	NAND2(x,d)	6+4 = 10
		w	t2	NAND2(y,z)	10 + 4 = 14
y Lz	Ø N	0	t1	INV(w)	14 + 2 = 16
			t3	AND2(y,z)	10 + 5 = 15
a x d	v by		t6B	AOI21(x,d,a)	10 + 6 = 16
\Box					
bl lc	v ^o o				

Minimum-delay cover for load-dependent delays

Model

- \triangle Gate delay is d = α + β cap_load
- ▲ Capacitive load depends on the driven cells (fanout cone)
- ▲ There is a finite (possibly small) set of capacitive loads

◆ Algorithm

- ▲ Visit subject tree bottom up
- ▲ Compute an array of solutions for each possible load
- ▲ For each input to a matching cell, the best match for the corresponding load is selected

Optimality

- ▲ Optimum solution when all possible loads are considered
- ▲ Heuristic: group loads into bins

- ◆ Delays: INV:1+load NAND2: 3+load AND2: 4+load AOI21: 9+load
- \bullet All inputs are stable at time 0, except for $t_d = 6$
- ◆ All loads are 1

Same as before!

Network	Subject graph	Vertex	Match	Gate	Cost
ol		Х	t2	NAND2(b,c)	4
	٩I	у	t1	INV(a)	2
	W N	Z	t2	NAND2(x,d)	6+4 = 10
		W	t2	NAND2(y,z)	10 + 4 = 14
yç	OI N	o	t1	INV(w)	14 + 2 = 16
$ A A \rangle$			t3	AND2(y,z)	10 + 5 = 15
$\begin{vmatrix} a & x & d \end{vmatrix}$	v N		t6B	AOI21(x,d,a)	10 + 6 = 16
	v v				

- ◆ Delays: INV: 1+load NAND2: 3+load AND2: 4+load AOI21: 9+load
- ◆ All inputs are stable at time 0, except for t_d = 6
- All loads are 1 (for cells seen so far)
- ◆ Add new cell SINV with delay 1 + ½ load and load 2
- ◆ The sub-network drives a load of 5

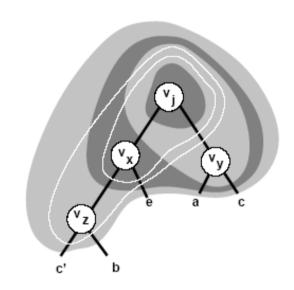
					Cost		
Network	Subject graph	Vertex	Match	Gate	Load=1	Load=2	Load=5
6		Х	t2	NAND2(b,c)	4	5	8
	O I	у	t1	INV(a)	2	3	6
		Z	t2	NAND2(x,d)	10	11	14
	₽ N	w	t2	NAND2(y,z)	14	15	18
y z	ØI ØN	o	t1	INV(w)			20
A A			t3	AND2(y,z)			19
a x d	v by		t6B	AOI21(x,d,a)			20
				SINV(w)			18.5
bl lc	v [©] • _v						

Module 2

- Objectives
 - ▲ Boolean covering
 - **▲** Boolean matching
 - ▲ Simultaneous optimization and binding
 - ▲ Extensions to Boolean methods

Boolean covering

- Decompose network into base functions
- **◆Partition network into cones**
- **◆**Apply bottom-up covering to each cone
 - ▲ When considering vertex v:
 - **▼** Construct clusters by local elimination
 - **▼** Limit the depth of the cluster by limiting the support of the function
 - **▼** Associate several functions with vertex **v**
 - **▼** Apply matching and record cost



```
f_{j,1} = xy;

f_{j,2} = x(a+c);

f_{j,3} = (e+z)y;

f_{j,4} = (e+z)(a+c);

f_{j,5} = (e+c'+d)y;

f_{j,6} = (e+c'+d)(a+c);
```

Boolean matching *P*-equivalence

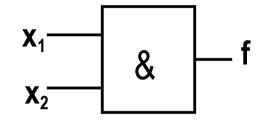
- ◆ Cluster function f(x)
 - **▲ Sub-network behavior**
- ◆ Pattern function g(y)
 - ▲ Cell behavior
- ◆ P-equivalence
 - ▲ Is there a permutation operator P, such that f(x) = g(Px) is a tautology?
- ◆ Approaches:
 - ▲ Tautology check over all input permutations
 - ▲ Multi-rooted pattern ROBDD capturing all permutations

Input/output polarity assignment

- **♦ NPN** classification of logic functions
- **♦** *NPN*-equivalence
 - ▲ There exist a permutation operator P and complementation operators N_i and N_o , such that $f(x) = N_o g(P N_i x)$ is a tautology
- Variations:
 - ▲ *N*-equivalence
 - ▲ PN-equivalence

Boolean matching

- **◆** Pin assignment problem:
 - ▲ Map cluster variables x to pattern variables y



- \triangle Characteristic equation: A(x,y) = 1
- ◆ Pattern function under variable assignment:

◆ Tautology problem

$$\blacktriangle f(x) = g_A(x)$$

$$\blacktriangle \forall_{x} f(x) = S_{y} (A(x,y) g(y))$$

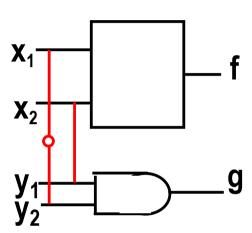
- ◆ Cluster terminals: x -- cell terminals: y
- ◆ Assign x₁ to y'₂ and x₂ to y₁
- Characteristic equation

$$\triangle A (x_1,x_2,y_1,y_2) = (x_1 \oplus y_2) (x_2 \overline{\oplus} y_1)$$

$$\triangle g = y_1 y_2$$

Pattern function under assignment

$$\triangle S_{y1y2}$$
 A g = S_{y1y2} (($x_1 \oplus y_2$) ($x_2 \oplus y_1$) $y_1 y_2$) = $x_2 x'_1$



Signatures and filters

- Capture some properties of Boolean functions
- ◆ If signatures do not match, there is no match
- Signatures are used as filters to reduce computation
- **◆** Signatures:
 - **▲** Unateness
 - **▲** Symmetries
 - **▲** Co-factor sizes
 - **▲** Spectra

Filters based on unateness and symmetries

- **◆** Any pin assignment must associate:
 - \triangle Unate variables in f(x) with unate variables in g(y)
 - \triangle Binate variables in f(x) with binate variables in g(y)
- Variables or group of variables:
 - \triangle That are interchangeable in f(x) must be interchangeable in g(y)

- ◆ Cluster function: f = abc
 - ▲ Symmetries { { a,b,c} }
 - **▲** Unate
- Pattern functions
 - \triangle g₁ = a + b + c
 - **▼** Symmetries { { a,b,c} }
 - **▼** Unate
 - \triangle g₂ = ab +c
 - **▼** Symmetries { {a,b}, {c} }
 - **▼** Unate
 - \triangle g₃ = abc' + a' b' c
 - **▼** Symmetries { {a,b,c} }
 - **▼** Binate

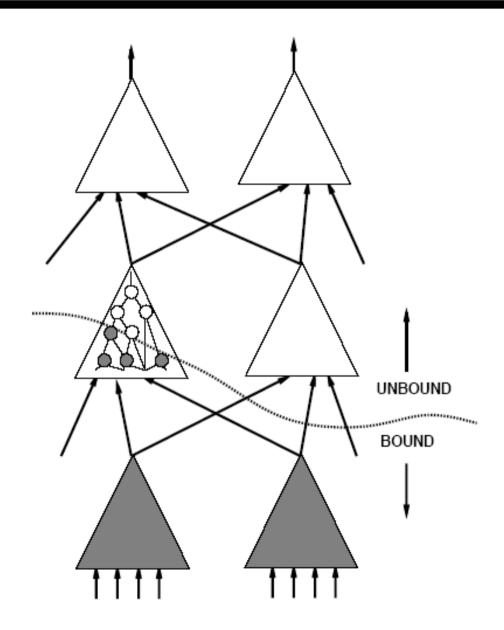
Concurrent optimization and library binding

Motivation

- ▲ Logic simplification is usually done prior to binding
- ▲Logic simplification and substitution can be combined with binding

◆Mechanism

- ▲Binding induces some *don't care* conditions
- ▲Exploit don 't cares as degrees of freedom in matching



Boolean matching with don't care conditions

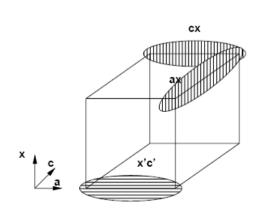
- Given f(x), $f_{DC}(x)$ and g(y)
 - **△g** matches f, if g is equivalent to h, where:

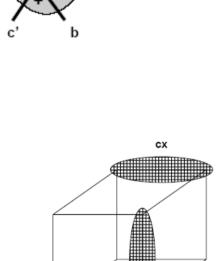
$$f f'_{DC} \leq h \leq f + f_{DC}$$

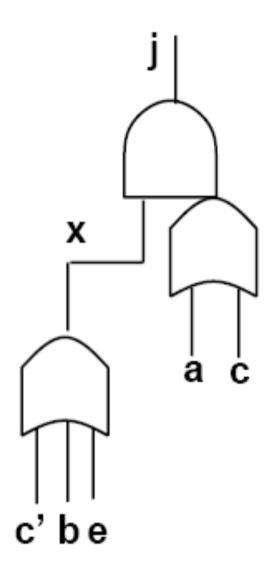
Matching condition:

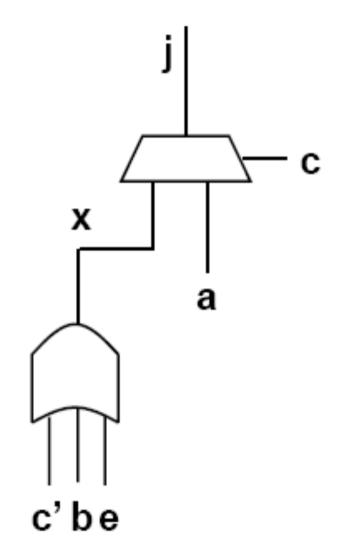
$$\forall_x (f_{DC}(x) + f(x) \oplus S_y (A(x,y)g(y)))$$

- ◆Assume v_x is bound to an OR3(c',b,e)
- ◆Don't care set includes x ⊕ (c'+b+e)
- ◆Consider $f_j = x(a+c)$ with CDC = x' c'
- **◆**No simplification.
 - ▲ Mapping into AOI gate.
- **◆**Matching with DCs.
 - ▲ Map to a MUX gate.









Extended matching

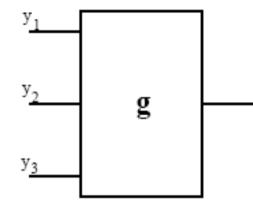
Motivation:

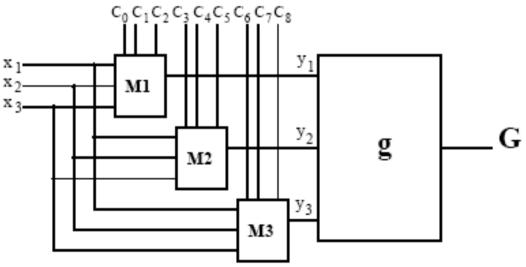
- ▲ Search implicitly for best pin assignment
- ▲ Make a single test, determining matching and assignment
- **◆** Technique:
 - ▲ Construct BDD model of cell and assignments
- Visual intuition:
 - ▲ Imagine to place MUX function at cell inputs
 - ▲ Each cell input can be routed to any cluster input (or voltage rail)
 - ▲ Input polarity can be changed:
 - **▼** NP-equivalence (extensible to NPN)
 - ▲ Cell and cluster may differ in size
- ◆ Cell and multiplexers are described by a composite function G(x,c)
 - ▲ Pin assignment is determining c

$$\phi y_1(c,x) = (c_0c_1x_1 + c_0c'_1x_2 + c'_0c_1x_3) \oplus c_2$$

◆G =
$$y_1$$
 (c,x) + y_2 (c,x) y_3 (c,x)

◆An EXOR gate can be placed at the gate output to support NPN-equivalence check



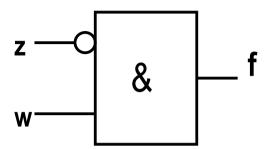


Extended matching modeling

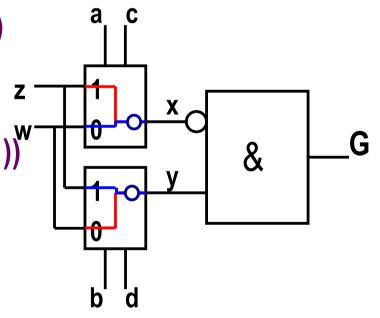
- Model composite functions with ROBDDs
 - ▲ Assume n-input cluster and m-input cell
 - ▲ For each cell input:
 - **▼** 「log₂ n variables for pin permutation
 - **▼** One variable for input polarity
 - ▲ Total size of c: $m(\lceil \log_2 n \rceil + 1)$
 - **▲** One additional variable for output polarity
- ◆ A match exists if there is at least one value of c satisfying

$$M(c) = \forall_x [G(x,c) \oplus f(x)]$$

- ◆Cell: g=x' y
- ◆Cluster: f = wz'



- ◆G(a,b,c,d) = (c⊕(za+wa'))'(d⊕(zb+wb'))
- ◆F ⊕ G=(wz)⊕ (c⊕(za+wa'))' (d⊕zb+wb'))^w
- **♦**M(c) = ab' c' d' + a' bcd



Extended matching

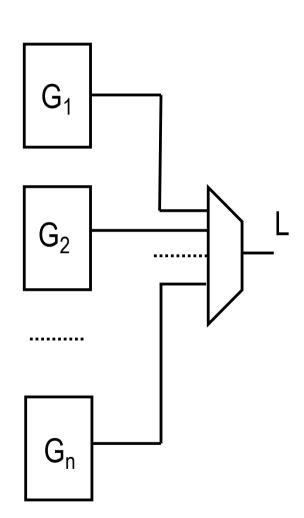
- Extended matching captures implicitly all possible matches
- ◆ No extra burden when exploiting don't care sets
- \bullet M (c) = \forall_x [G(x,c) \oplus f(x) + f_{DC}(x)]
- Efficient BDD representation
- Extensions:
 - **▲** Support multiple-output matching
 - ▲ Full library representation

Full library model

- ◆ Represent full library with L(x,c)
 - ▲ One single (large) BDD
- Visual intuition
 - ▲ All composite cells connected to a MUX
- ◆ Compare cluster to library L(x,c)

$$\blacktriangle M (c) = \forall_x [L(x,c) \oplus f(x) + f_{DC}(x)]$$

- ▲ Vector c determines:
 - **▼** Feasible cell matches
 - **▼** Feasible pin assignments
 - **▼** Feasible output polarity



Summary

- Library binding is a key step in synthesis
- Most systems use some rules together with heuristic algorithms that concentrate on combinational logic
 - ▲ Best results are obtained with Boolean matching
 - ▲ Sometimes structural matching is used for speed
- Library binding is tightly linked to buffering and to physical design